q_trigonometria_trigonometria_628524914.png

INTRODUÇÃO À TRIGONOMETRIA

Duvidas Clike aqui »

Untitled-2(79).jpg

Formulas

Aprenda da maneira mais facil clike aqui»

Slide # 3

Slide # 3

Vá para o Blogger Editar HTML e encontrar este texto e substituir pela sua descrição do post em destaque... Mais informações »

Slide # 4

Slide # 4

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Mais informações »

Slide # 5

Slide # 5

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Mais informações »

terça-feira, 20 de maio de 2014

Função de segundo grau...


Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a ≠ 0, é denominada função do 2º grau. Generalizando temos:
As funções do 2º grau possuem diversas aplicações no cotidiano, principalmente em situações relacionadas à Física envolvendo movimento uniformemente variado, lançamento oblíquo, etc.; na Biologia, estudando o processo de fotossíntese das plantas; na Administração e Contabilidade relacionando as funções custo, receita e lucro; e na Engenharia Civil presente nas diversas construções.

A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.

As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau, ax² + bx + c = 0, dependendo do valor do discriminante ? (delta), podemos ter as seguintes situações gráficas:

? > 0, a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.


? = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.

? < 0, a equação não possui raízes reais. A parábola não intercepta o eixo x.


Postado pela equipe:
Anderson Lira;
João Victor;
Pabllo Rhuan;
Nicolas Coelho.

0 comentários:

Postar um comentário