Círculo Trigonométrico
A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática que estuda a proporção, fixa, entre os comprimentos dos lados de um triângulo retângulo, para os diversos valores de um dos seus ângulos agudos. (Entre estes ângulos, os de 30º, 45º e 60º são denominados ângulos notáveis.) As proporções entre os 3 lados dos triângulos retângulos são denominadas de seno, cosseno, tangente e cotangente, dependendo dos lados considerados na proporção.
Já o Círculo Trigonométrico é um recurso criado para facilitar a visualização destas proporções entre os lados dos triângulos retângulos. Ele consiste em uma circunferênciaorientada de raio unitário, centrada na origem dos 2 eixos de um plano cartesiano ortogonal, ou seja, um plano definido por duas retas perpendiculares entre si, ambas com o valor 0 (zero) no ponto onde elas se cortam. Existem dois sentidos de marcação dos arcos no círculo: o sentido positivo, chamado de anti-horário, que se dá a partir da origem dos arcos até o lado terminal do ângulo correspondente ao arco; e o sentido negativo, ou horário, que se dá no sentido contrário ao anterior.
Seno
Dado um triângulo retângulo, o seno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o seno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo vertical.
Cosseno
Dado um triângulo retângulo, o cosseno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto adjacente a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o cosseno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo horizontal.
Como o cosseno é esta projeção, e o raio do círculo trigonométrico é igual a 1, segue que,
ou seja, a imagem do cosseno é o intervalo fechado ![[-1,1].](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uk1W6tgZePcjbLGR6wwSrB7e9HMcvfbTplthIWn_mI2yxKh3e10l5_wKYwnSKsvJPC0sawZT-gnn0zy5HKwE55xRrKjzhR98KaQFKNQTnCse7Zj3iTYD73HBW01xHxK-C86O5tOlyM_RscSqY_=s0-d)
Tangente
Dado um triângulo retângulo, a tangente de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento do cateto adjacente a ele, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o valor da tangente de um ângulo qualquer pode ser visualizado na reta vertical que tangencia este círculo no ponto em que ele corta o eixo horizontal do lado direito. Nesta reta tangente ao círculo trigonométrico, o valor da tangente trigonométrica de qualquer ângulo é representado pelo segmento que vai do ponto em que ela corta o eixo horizontal até o ponto em que ela corta a reta que contém o raio do círculo trigonométrico para o ângulo considerado. Para avaliar este valor, deve-se compará-lo com o raio do círculo trigonométrico que, por definição, é igual a 1, de preferência quando este raio se encontra sobre a parte superior do eixo ortogonal vertical. Observe que, enquanto o seno e o cosseno são sempre menores do que o raio do círculo trigonométrico e, portanto, menores do que 1, a tangente trigonométrica pode ser tanto menor quanto maior do que 1.
Algumas relações
Estas são as mais importantes funções trigonométricas; outras funções podem ser definidas tomando as razões dos outros lados de um triângulo retângulo, mas podem ser expressas em termos de seno e cosseno. São elas a tangente, secante, cotangente, e cossecante.
Até então, as funções trigonométricas tem sido definidas por ângulos entre 0 e 90 graus (0 e π/2 radianos) apenas. Usando um círculo unitário, pode-se estendê-los para todos argumentos positivos e negativos (veja função trigonométrica).
Uma vez que as funções seno e cosseno tenham sido tabuladas (ou computadas por uma calculadora), pode-se responder virtualmente todas questões sobre triângulos arbitrários, usando a lei dos senos e a lei dos cossenos. Estas leis podem ser usadas para calcular os ângulos restantes e lados de qualquer triângulo bem como dois lados e um ângulo ou dois ângulos e um lado ou três lados conhecidos.
Alguns matemáticos acreditam que a trigonometria foi originalmente inventada para calcular relógios de sol, um tradicional exercício em antigos livros. Isto é também muito importante para a agrimensura.
Postado pela equipe:
Anderson Lira;
João Victor;
Pabllo Rhuan;
Nicolas Coelho.
0 comentários:
Postar um comentário