q_trigonometria_trigonometria_628524914.png

INTRODUÇÃO À TRIGONOMETRIA

Duvidas Clike aqui »

Untitled-2(79).jpg

Formulas

Aprenda da maneira mais facil clike aqui»

Slide # 3

Slide # 3

Vá para o Blogger Editar HTML e encontrar este texto e substituir pela sua descrição do post em destaque... Mais informações »

Slide # 4

Slide # 4

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Mais informações »

Slide # 5

Slide # 5

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Mais informações »

segunda-feira, 2 de junho de 2014

Circulo trigonométrico básico:Teoria!

Círculo Trigonométrico


Círculo trigonométrico

Círculo trigonométrico, com a posição das funções seno, cosseno, tangente e cotangente explicitadas.
A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática que estuda a proporção, fixa, entre os comprimentos dos lados de um triângulo retângulo, para os diversos valores de um dos seus ângulos agudos. (Entre estes ângulos, os de 30º, 45º e 60º são denominados ângulos notáveis.) As proporções entre os 3 lados dos triângulos retângulos são denominadas de seno, cosseno, tangente e cotangente, dependendo dos lados considerados na proporção.
Já o Círculo Trigonométrico é um recurso criado para facilitar a visualização destas proporções entre os lados dos triângulos retângulos. Ele consiste em uma circunferênciaorientada de raio unitário, centrada na origem dos 2 eixos de um plano cartesiano ortogonal, ou seja, um plano definido por duas retas perpendiculares entre si, ambas com o valor 0 (zero) no ponto onde elas se cortam. Existem dois sentidos de marcação dos arcos no círculo: o sentido positivo, chamado de anti-horário, que se dá a partir da origem dos arcos até o lado terminal do ângulo correspondente ao arco; e o sentido negativo, ou horário, que se dá no sentido contrário ao anterior.

Seno

Dado um triângulo retângulo, o seno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o seno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo vertical.

Cosseno

Dado um triângulo retângulo, o cosseno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto adjacente a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o cosseno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo horizontal.
Como o cosseno é esta projeção, e o raio do círculo trigonométrico é igual a 1, segue que, \forall x\in\mathbb{R},-1\leq\operatorname{cos}(x)\leq1, ou seja, a imagem do cosseno é o intervalo fechado [-1,1].

Tangente

Dado um triângulo retângulo, a tangente de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento do cateto adjacente a ele, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o valor da tangente de um ângulo qualquer pode ser visualizado na reta vertical que tangencia este círculo no ponto em que ele corta o eixo horizontal do lado direito. Nesta reta tangente ao círculo trigonométrico, o valor da tangente trigonométrica de qualquer ângulo é representado pelo segmento que vai do ponto em que ela corta o eixo horizontal até o ponto em que ela corta a reta que contém o raio do círculo trigonométrico para o ângulo considerado. Para avaliar este valor, deve-se compará-lo com o raio do círculo trigonométrico que, por definição, é igual a 1, de preferência quando este raio se encontra sobre a parte superior do eixo ortogonal vertical. Observe que, enquanto o seno e o cosseno são sempre menores do que o raio do círculo trigonométrico e, portanto, menores do que 1, a tangente trigonométrica pode ser tanto menor quanto maior do que 1.

Algumas relações


O círculo unitário
 \mbox{sen} A = {\mbox{cateto oposto} \over \mbox{hipotenusa}}
 \qquad \cos A = {\mbox{cateto adjacente} \over \mbox{hipotenusa}}
Estas são as mais importantes funções trigonométricas; outras funções podem ser definidas tomando as razões dos outros lados de um triângulo retângulo, mas podem ser expressas em termos de seno e cosseno. São elas a tangentesecantecotangente, e cossecante.
 \tan A = {\mbox{sen} A \over \cos A} = {\mbox{cateto oposto} \over \mbox{cateto adjacente}}
 \qquad \sec A = {1 \over \cos A}   = {\mbox{hipotenusa} \over \mbox{cateto adjacente}}
 \cot A = {\cos A \over \mbox{sen} A} = {\mbox{cateto adjacente} \over \mbox{cateto oposto}}
 \qquad \csc A = {1 \over \mbox{sen} A}   = {\mbox{hipotenusa} \over \mbox{cateto oposto}}
Até então, as funções trigonométricas tem sido definidas por ângulos entre 0 e 90 graus (0 e π/2 radianos) apenas. Usando um círculo unitário, pode-se estendê-los para todos argumentos positivos e negativos (veja função trigonométrica).

Relógio de sol
Uma vez que as funções seno e cosseno tenham sido tabuladas (ou computadas por uma calculadora), pode-se responder virtualmente todas questões sobre triângulos arbitrários, usando a lei dos senos e a lei dos cossenos. Estas leis podem ser usadas para calcular os ângulos restantes e lados de qualquer triângulo bem como dois lados e um ângulo ou dois ângulos e um lado ou três lados conhecidos.
Alguns matemáticos acreditam que a trigonometria foi originalmente inventada para calcular relógios de sol, um tradicional exercício em antigos livros. Isto é também muito importante para a agrimensura.


Postado pela equipe:
Anderson Lira;
João Victor;
Pabllo Rhuan;
Nicolas Coelho.

0 comentários:

Postar um comentário